6m^2+12m-144=

Simple and best practice solution for 6m^2+12m-144= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6m^2+12m-144= equation:


Simplifying
6m2 + 12m + -144 = 0

Reorder the terms:
-144 + 12m + 6m2 = 0

Solving
-144 + 12m + 6m2 = 0

Solving for variable 'm'.

Factor out the Greatest Common Factor (GCF), '6'.
6(-24 + 2m + m2) = 0

Factor a trinomial.
6((-6 + -1m)(4 + -1m)) = 0

Ignore the factor 6.

Subproblem 1

Set the factor '(-6 + -1m)' equal to zero and attempt to solve: Simplifying -6 + -1m = 0 Solving -6 + -1m = 0 Move all terms containing m to the left, all other terms to the right. Add '6' to each side of the equation. -6 + 6 + -1m = 0 + 6 Combine like terms: -6 + 6 = 0 0 + -1m = 0 + 6 -1m = 0 + 6 Combine like terms: 0 + 6 = 6 -1m = 6 Divide each side by '-1'. m = -6 Simplifying m = -6

Subproblem 2

Set the factor '(4 + -1m)' equal to zero and attempt to solve: Simplifying 4 + -1m = 0 Solving 4 + -1m = 0 Move all terms containing m to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -1m = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -1m = 0 + -4 -1m = 0 + -4 Combine like terms: 0 + -4 = -4 -1m = -4 Divide each side by '-1'. m = 4 Simplifying m = 4

Solution

m = {-6, 4}

See similar equations:

| x^3-18x^2+60x=0 | | -5y(y+6)(y+2)=0 | | 7x+8x=26 | | 3x^2-4=2 | | 31=5x+21 | | 24+36n=71 | | 2x-3/9=1 | | 0.5(x+50)+0.3x=41 | | 24+36=71 | | 8(8-k)=-72k | | 7+6=83 | | 2x^4+22x^3+56x^2= | | 6=r+3 | | 11-4c=7-8x | | u+59=u+52 | | 6x+5x=15 | | 1y-10=-13 | | 4(u+1)+u=8(u+1)+6 | | 6x-27.7=1.66666666667(30-9x) | | -2(y-3)=y+24 | | 6n^2+72n+192= | | 39=4+7x | | 9x-4(x-5)=5x+4 | | ln(4x-5)+1=3 | | x+10/2=3 | | 28=-2x+2 | | 20+6-2-6= | | 4b-1=4b+6 | | 4(x-3)+4=-20 | | 19+17=c | | 4xwhat=120 | | -7y+8-3y+12=8y-5-3y |

Equations solver categories